Chemistry Letters 1996 405

## Organopalladium and Platinum Complexes of C<sub>60</sub> Bearing Isonitrile Ligands

Hideo Nagashima,\* Mitsuhiko Nakazawa, Takeshi Furukawa, and Kenji Itoh<sup>#</sup>
Department of Materials Science, Toyohashi University of Technology, Toyohashi, Aichi 441

(Received February 13, 1996)

Organopalladium or platinum complexes,  $(\eta^2-C_{60})M(CNR)_2$  (1 M =Pt, 3; M = Pd: R =  ${}^tBu$ , 2,6-Me $_2C_6H_3$ , 2,4,6-Me $_3C_6H_2$ , cyclohexyl) were synthesized from  $C_{60}M_n$  (M = Pd, Pt; n = ca.1) and the corresponding isonitriles. Unprecedented reaction of 1 with additional isonitriles occurred to form  $(\eta^2-C_{60})Pt(CNR)_4$  (2) in the case where R = 2,6-Me $_2C_6H_3$ , 2,4,6-Me $_3C_6H_2$ , cyclohexyl).

Organometallic compounds of fullerenes have contributed to understanding the structure and chemical nature of these.<sup>1</sup> Despite their potential reactivity, these complexes are generally stable, and do not react with organic substrates. In the famous Fagan complex (η<sup>2</sup>-C<sub>60</sub>)Pt(phosphines)<sub>2</sub>, C<sub>60</sub> acts like an electron-deficient olefin and bonds with electron-donating metal fragments. 1a,1b Theoretical studies suggested that large backdonation from the metal fragment to LUMO of the C<sub>60</sub> moiety was important to stabilize the complex.<sup>2</sup> Our interest has been focussed on the introduction of less electron-donating organoplatinum fragments than Pt(phosphine)<sub>2</sub> to C<sub>60</sub>, in which insufficient back-donation from the metal fragment may result in destabilization of the complexes and lead to their new reactivity. We wish to report here that such organoplatinum complexes, ( $\eta^2$  $C_{60}$ )Pt(CNR)<sub>2</sub>(1), are easily synthesized from  $C_{60}$ Pt<sub>n</sub> (n = ca.1)<sup>3a</sup> and isonitriles. Homologous organopalladium complexes (3) were also prepared from  $C_{60}Pd_n$  (n = ca. 1).3b Of importance is that the platinum complexes 1 unprecedentedly reacted with additional isonitriles to form  $(\eta^2-C_{60})Pt(CNR)_4(2)$ .

As described earlier,  $C_{60} Pt_n$  (n = ca. 1) reacted with phosphines and phosphites to give  $(\eta^2 - C_{60}) PtL_2$  [L =  $PR_3$ ,  $P(OR)_3$ ]. By using a similar procedure, the isonitrile complexes 1 were prepared by the reaction of  $C_{60} Pt_n$  (n = ca.1) with isonitriles. In a typical example, treatment of  $C_{60} Pt_n$  with  $CN^tBu$  (2 eq.) in toluene at room temperature for 3 h afforded  $(\eta^2 - C_{60}) Pt(CN^tBu)_2$  (1a) in 93% yield. A  $CN^tBu$  resonances assigned to the  $C_{60}$  ligand were similar to those of  $(\eta^2 - C_{60}) Pt(phosphines)_2$ ; And this indicates that the structure of 1a is similar to the Fagan complex. Three reversible reduction waves observed for  $C_{60} Ptu$  which reduction potentials were more negative than those of  $C_{60} Ptu$  which reduction potentials were more negative than those of  $C_{60} Ptu$  revealed that the  $C_{60} Ptu$  phosphines  $C_{60} Ptu$  revealed that the  $C_{60} Ptu$  phosphines  $C_{60} Ptu$  revealed that the  $C_{60} Ptu$  phosphine)  $C_{60} Ptu$  phosphine)  $C_{60} Ptu$  revealed that the  $C_{60} Ptu$  phosphine)  $C_{60} Ptu$  phosphine)  $C_{60} Ptu$  phosphine)  $C_{60} Ptu$  revealed that the  $C_{60} Ptu$  phosphine)  $C_{60} P$ 

Unprecedented reaction was discovered in the experiments to synthesize  $(\eta^2-C_{60})$ Pt[CN(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]<sub>2</sub> (1b). Careful treatment of  $C_{60}$ Pt<sub>n</sub> (n = ca.1) with CN(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) (2 eq.) resulted in successful synthesis of 1b in 72% yield with spectroscopic data similar to those of 1a. However, this compound was readily reacted with additional isonitriles to form a new complex of which the formula is  $(\eta^2-C_{60})$ Pt[CN(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]<sub>4</sub> (2b) in 77% yield. Synthesis of 2b was alternatively achieved by treatment of  $C_{60}$ Pt<sub>n</sub> (n = ca.1) with 4 equivalents of 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC in 72% yield. The formula of 2b was evidenced by the fact that the molecular ion peak (M = 1439) was observed in the FABmass spectrum which had isotope intensities consistent with

2b + 
$$Ph_2PCH_2CH_2PPh_2$$
 (dppe)  
——  $(\eta^2-C_{60})Pt(dppe) + 2.6-Me_2C_6H_3NC$  (eq.2)  
(4eq. based on dppe)

Scheme 1.

Figure 1.

those of calculated values. The following quantitative experiments using  $^1H$  NMR spectra also supported the formula of  $2\mathbf{b}$ ; exactly two equivalents of  $CN(2,6\text{-Me}_2C_6H_3)$  reacted with  $1\mathbf{b}$  to form  $2\mathbf{b}$ , whereas the reaction of  $2\mathbf{b}$  with 1 eq. of dppe  $(Ph_2PCH_2CH_2PPh_2)$  gave  $(\eta^2\text{-}C_{60})Pt(dppe)$  with exactly 4 eq. of  $CN(2,6\text{-Me}_2C_6H_3)$  based on  $2\mathbf{b}$  (Scheme 1, eq.2).

Spectroscopic data of **2b** indicated that two different types of isonitrile ligands were bonded to platinum. IR spectrum of **2b** showed three vibrations at 2179, 2156, and 1608 cm<sup>-1</sup>. Two sets of resonances derived from the 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> group were observed both in <sup>1</sup>H and <sup>13</sup>C NMR. One set of proton signals was apparently shifted upfield (~1ppm). Carbon resonances derived from C<sub>60</sub> consisting of 17 signals are indicative of the existence of C<sub>2v</sub> symmetry in the molecule. It is noteworthy that one peak appeared at a higher field ( $\delta$  89.2 ppm) than the others. <sup>13</sup>C Resonances in this region are characteristic for sp<sup>3</sup>-like carbons in the C<sub>60</sub> moiety, which are bonded to organic fragments in organofullerene derivatives. <sup>6</sup> Although carbon signals of CNAr were difficult to observe in the <sup>13</sup>C NMR of **2b**, they were ob-

Chemistry Letters 1996

served in that of  $(\eta^2\text{-}C_{60})\text{Pt}[^{13}\text{CN}(2,6\text{-}Me_2\text{C}_6\text{H}_3)]_4$  (**2b\***) prepared from  $C_{60}\text{Pt}_n$  (n = ca.1) and  $^{13}\text{CN}(2,6\text{-}Me_2\text{C}_6\text{H}_3)$ ; two signals derived from the quaternary carbons of isonitriles appeared at  $\delta$  144.4 and 196.1 ppm. Each of them was accompanied by a satellite due to the coupling with  $^{195}\text{Pt}$  ( $^{1}J_{Pt-C}=960$  and 1090 Hz, respectively). Each peak split into a doublet presumably due to the  $^{2}J$  coupling with the other coordinated  $^{13}\text{CNR}$ . Although unequivocal elucidation of the structure should be awaited for X-ray analysis, we tentatively propose the structure **2b** containing both "terminal" and "bridging" isonitrile ligands (R = 2,6-Me\_2CH\_3NC in Figure 1) from the above spectroscopic data, which was formed by insertion of two isonitriles between carbon-platinum bonds in **1b**.

Experiments to synthesize similar platinum complexes with different isonitriles and analogous palladium complexes revealed the following: The reactivity of the insertion reaction was dependent on the structure of isonitriles; the t-butylisonitrile complex 1a did not react with additional <sup>t</sup>BuNC even at higher temperature (~110 °C in toluene-d<sub>8</sub>), whereas two other isonitrile complexes,  $(\eta^2 - C_{60})$ Pt[CN(2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>)]<sub>2</sub> and (1c)C<sub>60</sub>)Pt[CN(cyclohexyl)]<sub>2</sub> (1d) easily reacted with excess isonitriles to form  $(\eta^2-C_{60})Pt[CN(2,4,6-Me_3C_6H_2)]_4$  (2c) and  $(\eta^2-C_{60})$ Pt[CN(cyclohexyl)]<sub>4</sub> (2d), respectively. Steric bulkiness of the t-butyl group presumably prevented the migratory insertion. The palladium complexes  $(\eta^2-C_{60})Pd(CNR)_2(3)$  were successfully prepared by the reaction of  $C_{60}Pd_n$  (n = ca.1) with isonitriles (<sup>t</sup>BuNC, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC, 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>NC, and cyclohexylNC) (Scheme 1, eq.3); however, they did not react with excess isonitriles to form  $(\eta^2-C_{60})Pd(CNR)_4$  even at higher temperatures.

All of these results are interesting in comparison with well investigated chemistry of the transition metal complexes bearing isonitrile ligands. In isonitrile complexes (η²-alkene)M(CNR)<sub>2</sub> synthesized by Otsuka (M = Ni, Pd) and Stone (M = Pt), electrondeficient alkenes such as TCNE and maleic anhydride effectively stabilize these complexes to compensate a good  $\sigma$ -donor character of isonitriles. Since C<sub>60</sub> is an electron acceptor comparable to TCNE, it is reasonable to form stable  $(\eta^2-C_{60})M(CNR)_2(M=Pd, Pt)$ . It is noteworthy that the reaction of  $(\eta^2$ -alkene)M(CNR)<sub>2</sub> with isonitriles to form  $(\eta^2$ -alkene)M(CNR)<sub>4</sub> has not yet been reported. Furthermore, the insertion was observed only in the platinum complexes and not in the palladium complexes; this is inconsistent with a general trend that the isonitrile insertion into palladium alkyls often occurs more readily than into platinum alkyls. In contrast to the fact that multiple insertion readily occurs into metal-alkyl bonds in usual isonitrile complexes, only two molecules of isonitriles were inserted to the metal-alkyl bonds in  $(\eta^2-C_{60})$ Pt(CNR)<sub>2</sub>. The "bridging" isonitriles are not very stable and their facile liberation from the coordination sphere was seen in the reaction of dppe with  $(\eta^2\text{-}C_{60})\text{Pt}(\text{CNR})_{4.}$  These features have not been observed in known chemistry of transition metal complexes bearing isonitriles, and may be affected by the special nature of the C<sub>60</sub> ligands. We are now actively investigating the mechanisms of this insertion reaction in comparison with  $(\eta^2$  $C_{60}$ )M(CNR)<sub>2</sub> (M = Pd, Pt).

This work was supported by grants from the Ministry of

Education, Culture, Science, and Sports of the Japanese government (04241215, 05225125, 05233105, 06217208). Experimental assistance by Professor Masa-aki Haga (Mie University) and measurement of mass spectra by Professor Shoji Eguchi (Nagoya University) are acknowledged.

## References and Notes

- # Present address: Department of Applied Chemistry, Nagoya University, Chikusa, Nagoya, Aichi 464-01.
- a) P. J. Fagan, J. C. Calabrese, and B. Malone, Science (Washington D. C.), 252, 1160 (1991); b) Idem Acc. Chem. Res. 25, 134; c) A. L. Balch, V. J. Catalano, and J. W. Lee, Inorg. Chem., 30, 3980 (1991); d) R. S. Koefod, M. F. Hudgens, and J. R. Shapley, J. R. J. Am. Chem. Soc., 113, 8957 (1991); e) Recent publication on the fullerene complexes: I. J. Mavunkal, Y. Chi, S. M. Peng, and G.-M. Lee, Organometallics 14, 4454 (1995).
- a) N. Koga and K. Morokuma, *Chem. Phys. Lett.*, **202**, 330 (1993);
   b) H. Fujimoto, Y. Nakao, Y., and K. Fukui, *J. Mol. Struct.*, **300**, 425 (1993).
- a) H. Nagashima, Y. Kato, H. Yamaguchi, E. Kimura, T. Kawanishi, M. Kato, Y. Saito, M. Haga, and K. Itoh, *Chem. Lett.*, 1994, 1207; b) H. Nagashima, H. Yamaguchi, Y. Kato, Y. Saito, M. Haga, and K. Itoh, *Chem. Lett.*, 1993, 2153.
- 4 **1a**: IR (KBr) 2140.  $^{1}$ H NMR ( $^{c}$ C<sub>6</sub>D<sub>6</sub>)  $\delta$  0.86 (s).  $^{13}$ C NMR (CDCl<sub>3</sub> at -30°C)  $\delta$  30.2, 57.7, 135.0, 149.0, 141.5, 141.9, 142.0, 142.8, 142.9, 143.0, 143.2, 143.7, 144.0, 144.1, 144.4, 145.3, 146.1, 147.2, 157.8. CV; -1.09, -1.69, -2.25 V vs Fc/Fc<sup>+</sup>; **1a** (0.2 mM) and TBAPF<sub>6</sub> (0.2 mM) in THF at -78°C; Pt electrode. Peaks derived from dissociated C<sub>60</sub> were also visible.  $^{5}$
- S. A. Lerke, B. A. Parkinson, D. H. Evans, and P. J. Fagan, J. Am. Chem..Soc., 114, 7807 (1992).
- 2b: <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 2.21 (s, 12H, Me), 2.34 (s, 12H, Me), 6.38 (t, 2H, J = 8.0 Hz), 6.70 (d, 4H, J = 8.0 Hz), 7.02 (d, 4H, J = 8.0 Hz), 7.18 (t, 2H, J = 8.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ R in the isonitrile ligands; 18.4, 19.7, 122.4, 127.1, 126.7 (2C), 127.7, 129.3, 134.4, 134.7. the C<sub>60</sub> moiety; 89.2, 139.9, 141.6, 142.3, 142.4, 142.5, 142.7, 144.5, 144.9, 145.1, 145.8, 145.9, 146.0, 147.2, 148.2, 153.3, 157.4.
- 7 For example, H. Nagashima, H. Terasaki, E. Kimura, K. Nakajima, and K. Itoh, *J. Org. Chem.* **59**, 1246 (1994).
- 8 Other supporting evidence for the existence of both terminal and bridging isonitriles was obtained in <sup>1</sup>H NMR of **2b** in the presence of excess CN(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>), in which only one set of coordinated isonitrile protons (Me δ 2.21) was broadened with remaining the other (Me δ 2.34) intact. This indicates exchange of only terminal isonitriles with uncoordinated isonitriles in NMR time scale.
- a) S. Otsuka, T. Yoshida, and Y. Tatsuno, J. Am. Chem. Soc., 93, 6462 (1971); b) M. T. Chicote, M. Green, M., J. L. Spencer, F. G. A. Stone, and J. Vincente, J. J. Chem. Soc., Dalton Trans. 1979, 536.